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2 Homology

We now turn to Homology, a functor which associates to a topological space X a sequence of abelian groups
Hk(X). We will investigate several important related ideas:

• Homology, relative homology, axioms for homology, Mayer-Vietoris

• Cohomology, coefficients, Poincaré Duality

• Relation to de Rham cohomology (de Rham theorem)

• Applications

The basic idea of homology is quite simple, but it is a bit difficult to come up with a proper definition. In
the definition of the homotopy group, we considered loops in X, considering loops which could be “filled in”
by a disc to be trivial.

In homology, we wish to generalize this, considering loops to be trivial if they can be “filled in” by
any surface; this then generalizes to arbitrary dimension as follows (let X be a manifold for this informal
discussion).

A k-dimensional chain is defined to be a k-dimensional submanifold with boundary S ⊂ X with a chosen
orientation σ on S. A chain is called a cycle when its boundary is empty. Then the kth homology group is
defined as the free abelian group generated by the k-cycles (where we identify (S, σ) with −(S,−σ)), modulo
those k-cycles which are boundaries of k+1-chains. Whenever we take the boundary of an oriented manifold,
we choose the boundary orientation given by the outward pointing normal vector.

Example 2.1. Consider an oriented loop separating a genus 2 surface into two genus 1 punctured surfaces.
This loop is nontrivial in the fundamental group, but is trivial in homology, i.e. it is homologous to zero.

Example 2.2. Consider two parallel oriented loops L1, L2 on T 2. Then we see that L1 −L2 = 0, i.e. L1 is
homologous to L2.

Example 2.3. This definition of homology is not well-behaved: if we pick any embedded submanifold S in a
manifold and slightly deform it to S′ which still intersects S, then there may be no submanifold with S ∪ S′
as its boundary. We want such deformations to be homologous, so we slightly relax our requirements: we
allow the k-chains to be smooth maps ι : S −→M which needn’t be embeddings.

This definition is still problematic: it’s not clear what to do about non-smooth topological spaces, and also
the definition seems to require knowledge of all possible manifolds mapping into M . We solve both problems
by cutting S into triangles (i.e. simplices) and focusing only on maps of simplices into M .

2.1 Simplicial homology

Definition 11. An n-simplex [v0, · · · , vn] is the convex hull of n+ 1 ordered points (called vertices)in Rm
for which v1 − v0, . . . , vn − v0 are linearly independent.

The standard n-simplex is

∆n = {(t0, . . . , tn) ∈ Rn+1 |
∑
i

ti = 1 and ti ≥ 0 ∀i},

and there is a canonical map ∆n −→ [v0, · · · , vn] via

(t0, . . . , tn) 7→
∑
i

tivi,

called barycentric coordinates on [v0, · · · , vn]. A face of [v0, · · · , vn] is defined as the simplex obtained by
deleting one of the vi, we denote it [v0, · · · , v̂i, · · · , vn]. The union of all faces is the boundary of the simplex,
and its complement is called the interior, or the open simplex.
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2.1 Simplicial homology 1300Y Geometry and Topology

Definition 12. A ∆-complex decomposition of a topological space X is a collection of maps σα : ∆n −→ X
(n depending on α) such that σα is injective on the open simplex ∆n

o , every point is in the image of exactly
one σα|∆n

o
, and each restriction of σα to a face of ∆n(α) coincides with one of the maps σβ , under the

canonical identification of ∆n−1 with the face (which preserves ordering). We also require the topology to
be compatible: A ⊂ X is open iff σ−1

α (A) is open in the simplex for each α.

It is easy to see that such a structure on X actually expresses it as a cell complex.

Example 2.4. Give the standard decomposition of 2-dimensional compact manifolds.

We may now define the simplicial homology of a ∆-complex X. We basically want to mod out cycles by
boundaries, except now the chains will be made of linear combinations of the n-simplices which make up X.

Let ∆n(X) be the free abelian group with basis the open n-simplices enα = σα(∆n
o ) of X. Elements∑

α nασα ∈ ∆n(X) are called n-chains (finite sums).
Each n-simplex has a natural orientation based on its ordered vertices, and its boundary obtains a natural

orientation from the outward-pointing normal vector field. Algebraically, this induced orientation is captured
by the following formula (which captures the interior product by the outward normal vector to the ith face):

∂[v0, · · · , vn] =
∑
i

(−1)i[v0, · · · , v̂i, · · · , vn].

This allows us to define the boundary homomorphism:

Definition 13. The boundary homomorphism ∂n : ∆n(X) −→ ∆n−1(X) is determined by

∂n(σα) =
∑
i

(−1)iσα|[v0,··· ,v̂i,··· ,vn].

This definition of boundary is clearly a triangulated version of the usual boundary of manifolds, and
satisfies ∂ ◦ ∂ = ∅, i.e.

Lemma 2.5. The composition ∂n−1 ◦ ∂n = 0.

Proof.

∂∂[v0 · · · vn] =
∑
j<i

(−1)i+j [v0, · · · , v̂j , · · · v̂i, · · · , vn] +
∑
j>i

(−1)i+j−1[v0, · · · , v̂i, · · · v̂j , · · · , vn]

the two displayed terms cancel.

Now we have produced an algebraic object: a chain complex (just as we saw in the case of the de Rham
complex). Let Cn be the abelian group ∆n(X); then we get the simplicial chain complex:

· · · // Cn+1
∂n+1 // Cn

∂n // Cn−1
// · · · // C1

∂1 // C0
∂0 // 0

and the homology is defined as the simplicial homology

H∆
n (X) :=

Zn = ker ∂n
Bn = im ∂n+1

Example 2.6. The circle is a ∆-complex with one vertex and one 1-simplex. so ∆0(S1) = ∆1(S1) = Z and
∂1 = 0 since ∂e = v − v. hence H∆

0 (S1) = Z = H∆
1 (S1) and H∆

k (S1) = 0 otherwise.

Example 2.7. For T 2 and Klein bottle: ∆0 = Z, ∆1 = 〈a, b, c〉 and ∆2 = 〈P,Q〉. For RP 2, same except
∆0 = Z2.
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2.2 Singular homology 1300Y Geometry and Topology

2.2 Singular homology

Simplicial homology, while easy to calculate (at least by computer!), is not entirely satisfactory, mostly
because it is so rigid - it is not clear, for example, that the groups do not depend on the triangulation. We
therefore relax the definition and describe singular homology.

Definition 14. A singular n-simplex in a space X is a continuous map σ : ∆n −→ X. The free abelian
group on the set of n-simplices is called Cn(X), the group of n-chains.

There is a linear boundary homomorphism ∂n : Cn(X) −→ Cn−1(X) given by

∂nσ =
∑
i

(−1)iσ|[v0,··· ,v̂i,··· ,vn],

where [v0, · · · , v̂i, · · · , vn] is canonically identified with ∆n−1. The homology of the chain complex (C•(X), ∂)
is called the singular homology of X:

Hn(X) :=
ker ∂ : Cn(X) −→ Cn−1(X)
im∂ : Cn+1(X) −→ Cn(X)

.

We would like to justify the statement that the homology is a functor. In fact we would like to show that
our assigning, to every space X, the complex of singular chains

X 7→ (C•(X), ∂)

is actually a functor from topological spaces to the category of chain complexes of abelian groups, where the
latter category has morphisms given by chain homomorphisms, just as in the case for the de Rham complex
(Ω•(M), d). By actually taking homology, we then obtain a functor to abelian groups. We would actually
like to show even more: that the functor X 7→ (C•(X), ∂) can be made into a 2-functor, sending homotopies
of continuous maps to chain homotopies: this will allow us to show that H•(X) is a homotopy invariant.

Given a singular n-simplex σ : ∆n −→ X and a map f : X −→ Y , the composition f ◦σ defines a simplex
for the space Y . In this way we define

f] : Cn(X) −→ Cn(Y ),

and we may verify that f]∂ = ∂f], implying that f] is a morphism of chain complexes, defining a functor
since (f ◦ g)] = f] ◦ g]. As a consequence, this induces a homomorphism

f∗ : Hn(X) −→ Hn(Y ).

Now we see how f] behaves for homotopic maps:

Theorem 2.8. The chain maps f], g] induced by homotopic maps f, g : X −→ Y are chain homotopic, i.e.
there exists P : Cn(X) −→ Cn+1(Y ) such that

g] − f] = P∂ + ∂P.

Hencce, f∗ = g∗, i.e. the induced maps on homology are equal for homotopic maps.

Proof. The proof is completely analogous to the same result for the de Rham complex. Given a homotopy
F : X × I −→ Y from f to g, define the Prism operators P : Cn(X) −→ Cn+1(Y ) as follows: for any n-
simplex σ : [v0, · · · , vn] −→ X, form the prism [v0, · · · , vn]×I, name the vertices vi = (vi, 0) and wi = (vi, 1),
and decompose this prism in terms of n+ 1-simplices as follows:

[v0, · · · , vn]× I =
n⋃
i=0

[v0, · · · , vi, wi, · · ·wn].
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Then we define

P (σ) =
n∑
i=0

(−1)iF ◦ (σ × Id)|[v0,··· ,vi,wi,··· ,wn] ∈ Cn+1(Y )

Now we show that ∂P = g] − f] − P∂, which expresses the fact that the boundary of the prism (left hand)
consists of the top ∆n × 1, bottom ∆n × 0, and sides ∂∆n × I of the prism.

∂P (σ) =
∑
j≤i

(−1)i(−1)jF ◦ (σ × Id)|[v0··· ,v̂j ,···vi,wi,··· ,wn]

+
∑
j≥i

(−1)i(−1)j+1F ◦ (σ × Id)|[v0··· ,vi,wi,···ŵj ,··· ,wn]

The terms with i = j in the two lines cancel except for i = j = 0 and i = j = n, giving g](σ)− f](σ). The
terms with i 6= j are −P∂(σ) by expressing it as a sum

P∂(σ) =
∑
i<j

(−1)i(−1)jF ◦ (σ × Id)|[v0··· ,vi,wi,···ŵj ,··· ,wn]

+
∑
i>j

(−1)i−1(−1)jF ◦ (σ × Id)|[v0··· ,v̂j ,··· ,vi,wi,··· ,wn]

Corollary 2.9. C• is a 2-functor and H• is homotopy invariant.
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2.3 H0 and H1 1300Y Geometry and Topology

2.3 H0 and H1

Proposition 2.10. If X has path components Xα, then Hn(X) =
⊕

αHn(Xα).

Proof. A singular simplex always has path-connected image. Hence Cn(X) is the direct sum of Cn(Xα).
The boundary maps preserve this decomposition. So Hn(X) =

⊕
αHn(Xα). (Since chains are finite sums,

we use the direct sum).

Proposition 2.11. If X is path-connected (and nonempty) then H0(X) ∼= Z.

Proof. Define ε : C0(X) −→ Z via ε(
∑
i niσi) =

∑
i ni. This is surjective if X nonempty. We must show

that ker ε = im∂1.
For any singular 1-simplex σ : ∆1 −→ X, we have ε(∂σ) = ε(σ|[v1] − σ|[v0]) = 1 − 1 = 0. Hence

im∂1 ⊂ ker ε.
For the reverse inclusion: if

∑
i ni = 0, we wish to show tha

∑
i niσi is a boundary of a singular 1-simplex.

Choose a path τi : I −→ X from a basepoint x0 to σi(v0) and let σ0 be the 0-simplex with image x0. Then
∂τi = σi − σ0, viewing τi as a singular 1-simplex. Then ∂

∑
i niτi =

∑
i niσi .

Later, we will axiomatize homology as a functor from spaces to abelian groups: there are many differ-
ent such functors, corresponding to different homology theories. To understand any homology theory it is
fundamental to compute its value on the one-point space.

Proposition 2.12. If X = {∗} then Hn(X) = 0 for n > 0 (and H0(X) = Z by the above result).

Proof. When the target is a single point, there can be only one singular n-simplex for each n, namely, the
map sending ∆n to the point ∗. Hence the chain groups are all Z, generated by σn. The boundary map
is ∂σn =

∑n
i=0(−1)iσn−1, which vanishes for n odd and is equal to σn−1 for n 6= 0 and even. Hence the

singular chain complex is

· · · // Z
∼= // Z 0 // Z

∼= // Z 0 // Z // 0

which has homology
· · · 0 0 0 0 Z 0

Note that the map ε : C0(X) −→ Z defined above may be viewed as an extension of the singular chain
complex (with C−1(X) = Z). The homology groups of this augmented chain complex are called the reduced
homology of X, and denoted H̃n(X). Clearly Hn(X) ∼= H̃n(X)⊕ Z and H̃n(X) ∼= Hn(X) for all n > 0.

Theorem 2.13 (Hurewicz isomorphism). The natural map h : π1(X,x0) −→ H1(X), given by regard-
ing loops as singular 1-cycles, is a homomorphism. If X is path-connected, h induces an isomorphism
π1(X)/[π1(X), π1(X)] −→ H1(X), i.e. H1(X) is the abelianization of the fundamental group.

In higher dimension, the Hurewicz theorem states that if the path-connected space X is n − 1 connected
for n ≥ 2 (i.e. πk(X) = 0 ∀k < n), then πn(X) is isomorphic to Hn(X).

Proof. First we describe some properties of the homology relation on paths f ∼ g ⇔ ∃τ : f − g = ∂τ , as
opposed to the homotopy of paths relation f ' g.

• if f is a constant path, then f ∼ 0 since H1(∗) = 0.

• f ' g ⇒ f ∼ g since we can write the homotopy I × I −→ X as a singular 2-chain (with two singular
2-simplices – cut the square by the diagonal) with boundary f − g + x0 − x1, and since the constant
paths x0, x1 are boundaries, so is f − g.

• f ·g ∼ f+g, since we can define a singular 2-chain with boundary f+g−f ·g by letting σ : [v0, v1, v2] −→
X be the composition of orthogonal projection onto [v0, v2] followed by f · g : [v0, v2] −→ X.
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2.4 Relative homology and the excision property 1300Y Geometry and Topology

• f−1 ∼ −f , since f + f−1 ∼ f · f−1 ∼ 0.

Applying these properties to loops, we obtain that h is a homomorphism. Clearly [π1, π1] ⊂ kerh, since H1

is abelian. Hence h induces a homomorphism πab1 (X) −→ H1.
A map in the opposite direction is given as follows: if f is a loop representative for a class in H1, choose

any path γ from x0 to f(0). Then ψ : [f ] 7→ [γfγ−1] is well-defined when taking values in πab1 .
Furthermore, it vanishes on boundaries: check on a singular 2-simplex, and view the 2-simplex as a

homotopy. It remains to show that ψ ◦ h = h ◦ ψ = 1.

2.4 Relative homology and the excision property

It is natural to expect that the homology of a space X is related to the homology of one of its subspaces
A ⊂ X; relative homology is a systematic way of analyzing this idea. Under some conditions on the pair
(X,A), we will also investigate the relationship to the homology of X/A. This will also lead us to the
Excision property and the Mayer-Vietoris sequence.

Definition 15. Let X be a space and A ⊂ X a subspace. The relative chains Cn(X,A) are chains in X
modulo chains in A, i.e.

Cn(X,A) :=
Cn(X)
Cn(A)

.

Since the boundary map ∂ : Cn(X) −→ Cn−1(X) takes Cn(A) to Cn−1(A), it descends to a boundary map,
also called ∂ : Cn(X,A) −→ Cn−1(X,A). We therefore get a chain complex

· · · // Cn(X,A) ∂ // Cn−1(X,A) // · · ·

whose cohomology gives the relative homology groups Hn(X,A). Intuitively, relative homology is the ho-
mology of X modulo A.

It is clear that our previous functoriality results on Hn(X) (sometimes called the absolute homology of
X) carry over to the relative homology. For example:

Proposition 2.14. if two maps of pairs f, g : (X,A) −→ (Y,B) are homotopic through maps of pairs
(X,A) −→ (Y,B), then f∗ = g∗ on relative cohomology.

The first result about relative homology groups is an algebraic fact which follows directly from their
definition. Since Cn(X,A) is by definition the quotient of Cn(X) by Cn(A), let i : Cn(A) −→ Cn(X) be the
inclusion and j be the quotient map, so that we have the exact sequence

0 // Cn(A) i // Cn(X)
j // Cn(X,A) // 0

We have this exact sequence for each n, and it also commutes with the boundary operator. Hence we get an
exact sequence of chain complexes:

0 // (C•(A), ∂) i // (C•(X), ∂)
j // (C•(X,A), ∂) // 0

Just as we saw for the de Rham complex, a short exact sequence of chain complexes gives a long exact
sequence of homology groups. Since we are dealing with chain complexes, not cochain complexes, the
connecting homomorphism δ coming from the boundary map ∂ is of degree −1. In this case, we obtain

Proposition 2.15 (Exactness). Given A ⊂ X, we have the following exact sequence:

H•(A)
i∗ // H•(X)

j∗yyssssssssss

H•(X,A)
δ(−1)

eeKKKKKKKKKK
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Figure 1: Braid diagram for triple

In fact, the boundary map δ has an obvious description in this application to relative homology: if
α ∈ Cn(X,A) is a relative cycle, then δ[α] is the n− 1-homology class given by [∂α] ∈ Hn−1(A).

Example 2.16. Let x0 ∈ X and consider the pair (X,x0). Then the long exact sequence in relative homology
implies Hn(X,x0) ∼= Hn(X) for all n > 0, while for n = 0 we have

0 // H0(x0) // H0(X) // H0(X,x0) // 0 ,

showing that H0(X,x0) ∼= H̃0(X) and hence Hn(X,x0) ∼= H̃n(X) for all n.

Formal consequences of subspace inclusion for relative homology can be more complicated: for instance,
suppose we have a triple (X,A,B) where B ⊂ A ⊂ X. Then we have short exact sequences

0 // Cn(A,B) // Cn(X,B) // Cn(X,A) // 0 ,

inducing the long exact sequence in homology:

H•(A,B) // H•(X,B)

xxqqqqqqqqqq

H•(X,A)
δ(−1)

ffMMMMMMMMMM

In fact, this long exact sequence couples with the long exact sequences for each pair to form a braid diagram–
see Fig. 2.4

The main result on relative homology is the excision property, which states that the homology of X
relative to A ⊂ X remains the same after deleting a subset Z whose closure sits in the interior of A. The
property is so fundamental that it has been promoted to an axiom defining a homology theory, as we shall
see.

Theorem 2.17 (Excision). Let Z ⊂ A ⊂ X, with Z ⊂ A◦. Then the inclusion (X\Z,A\Z) ↪→ (X,A)
induces isomorphisms

Hn(X\Z,A\Z) −→ Hn(X,A) ∀n.

An equivalent formulation is that if A,B ⊂ X have interiors which cover X, the inclusion (B,A ∩B) ↪→
(X,A) induces isomorphisms Hn(B,A ∩B) −→ Hn(X,A) for all n (simply set B = X\Z or Z = X\B).

Proof of Excision. Consider X as a union of A and B with interiors covering X. Then we have natural
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inclusion maps
C•(X)

C•(A) + C•(B)

ι

OO

C•(A)

77ppppppppppp
C•(B)

ggNNNNNNNNNNN

C•(A ∩B)

77ppppppppppp

ggNNNNNNNNNNN

If the map ι were an isomorphism, then we would have C•(X)/C•(A) = C•(B)/C•(A ∩ B), giving the
result. But the problem is that ι is not an isomorphism; there are “bad” simplices which can have nonempty
intersection with A−A∩B and B−A∩B. We would like to show that we can subdivide the bad simplices
into smaller good ones via a chain map ρ : C•(X) −→ C•(A) +C•(B), in such a way that it doesn’t change
the homology. In fact, we show that C•(A) + C•(B) is a deformation retract of C•(X), in the sense that
ρ ◦ ι = Id and ι ◦ ρ = ∂D + D∂ for some chain homotopy D. In fact we will choose D to preserve the
subcomplexes C•(A) and C•(B), implying that we obtain a chain homotopy equivalence

C•(X)/C•(A) −→ C•(B)/C•(A ∩B),

yielding the proof of the theorem.
The map ρ will essentially be an iteration of the barycentric subdivision map S, which we now define

(we will be a little sloppy to speed things up - see Hatcher for a full treatment).

Definition 16 (Subdivision operator). If w0, . . . wn are points in a vector space and b is any other point,
then b can be added to a simplex, forming a cone: b · [w0, · · · , wn] = [b, w0, · · · , wn]. Note that ∂b = Id− b∂,
i.e. the boundary of a cone consists of the base together with the cone on the boundary. Given any simplex
λ, let bλ be the barycenter. Then we define inductively the barycentric subdivision Sλ = bλ · S(∂λ), with
the initial step S[∅] = [∅] on the empty simplex. Note that the diameter of each simplex in the barycentric
subdivision of [v0, · · · , vn] is at most n/(n+ 1) times the diameter of [v0, · · · , vn], so that they approach zero
size as n→∞.

Now, given a singular n-simplex σ : ∆n −→ X, define Sσ = σ|S∆n , in the sense that it is a signed sum
of restrictions of σ to the n-simplices of the barycentric subdivision of ∆n. S : Cn(X) −→ Cn(X) is a chain
map, since

∂Sλ = ∂(bλ(S∂λ))
= S∂λ− bλ(∂S∂λ) since ∂bλ + bλ∂ = 1
= S∂λ− bλ(S∂∂λ) by induction
= S∂λ.

This subdivision operator is chain homotopic to the identity, via the map T : Cn(X) −→ Cn+1(X) given
as follows: Subdivide ∆n× I into simplices inductively by joining all simplices in ∆n×{0}∪ ∂∆n× I to the
barycenter of ∆n×{1}. Projecting ∆n×I −→ ∆n, we may compose with any singular simplex σ : ∆n −→ X
to obtain a sum of n+ 1-simplices. Formalizing this, we have Tλ = bλ(λ−T∂λ) and T [∅] = 0. We may then
check the formula ∂T + T∂ = Id− S:

∂Tλ = ∂(bλ(λ− T∂λ))
= λ− T∂λ− bλ(∂(λ− T∂λ)) using ∂Bλ = Id− bλ∂
= λ− T∂λ− bλ(S∂λ+ T∂∂λ) by induction
= λ− T∂λ− Sλ since Sλ = bλ(S∂λ)
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Note that T also preserves C•(A), C•(B).
For each singular n-simplex σ : ∆n −→ X, there exists a minimal m(σ) such that Sm(σ)(σ) lies in

Cn(A) + Cn(B). Note that the chain homotopy between Sm and Id is given by

Dm = T (1 + S + S2 + · · ·+ Sm−1).

We then define D : Cn(X) −→ Cn+1(X) via Dσ = Dm(σ)σ, and then we compute

∂Dσ +D∂σ = σ − [Sm(σ)σ +Dm(σ)(∂σ)−D(∂σ)],

and finally we define ρ(σ) to be the bracketed term. Claim: ρ maps C•(X) to C•(A)+C•(B). The first term
Sm(σ) clearly does, and since m(∂σ) ≤ m(σ), it follows that (Dm(σ) −D)(∂σ) consists of terms TSi(∂σ) for
i ≥ m(∂σ), which all lie in C•(A) + C•(B).

Finally, we have constructed ρ,D such that ρι = Id (since m is zero) and ∂D + D∂ = Id − ιρ, with D
preserving the subcomplex C•(A) + C•(B). As explained earlier, this proves the result.

Let A ⊂ X be a nonempty closed subspace which is a deformation retract of some neighbourhood in
X. We call such a pair (X,A) a good pair (CW pairs are automatically good pairs, see the Appendix in
Hatcher).

Corollary 2.18. If (X,A) is a good pair, then the quotient map q : (X,A) −→ (X/A,A/A) induces isomor-
phisms

q∗ : Hn(X,A) −→ Hn(X/A,A/A) ∼= H̃n(X/A) ∀n.

Proof. Let V be a neighbourhood of A in X which deformation retracts onto A and let ι : A ↪→ V be the
inclusion. Then we have the diagram

Hn(X,A)
ι∗ //

q∗

��

Hn(X,V )

q′∗
��

Hn(X/A,A/A)
ι′∗

// Hn(X/A, V/A)

The map ι∗ is an isomorphism, as follows: Hn(V,A) are zero for all n, since the deformation retraction gives
a homotopy equivalence of pairs (V,A) ' (A,A) and Hn(A,A) = 0. Then using the long exact sequence for
the triple (X,V,A) we see that ι∗ is an iso.

ι′∗ is also an iso, since the deformation retraction induces a deformation retraction of V/A onto A/A, so
by the same argument we get ι′∗ is an iso.

The groups on the right can be obtained by excision:

Hn(X,V )

q′∗
��

Hn(X\A, V \A)
j∗

oo

q′′∗
��

Hn(X/A, V/A) Hn(X/A−A/A, V/A−A/A)
j′∗oo

The maps j∗, j′∗ are iso by the excision property, and q′′∗ is an iso, since q restricted to the complement of A
is a homeo. This implies q′∗ is an iso, and hence q∗ is an iso, as required.

Corollary 2.19. If (X,A) is a good pair, then the exact sequence for relative homology may be written as

H̃•(A) // H̃•(X)

yysssssssss

H̃•(X/A)

δ(−1)

eeJJJJJJJJJ
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The above long exact sequence may be applied to the pair (Dn, ∂Dn), where Dn is the closed unit n-ball;
Note that Dn ' ∗ and hence Hk(Dn) = 0 ∀k. Also note that Dn/∂Dn ' Sn. Hence we have isomorphisms
H̃i(Sn) ∼= Hi−1(Sn−1), implying that H̃k(Sn) vanishes for k 6= n and is isomorphic to Z for k = n.

Corollary 2.20. Hk(Sn) ∼= Z for k = 0, n and Hi(Sn) = 0 otherwise.

We also get Brouwer’s theorem from this:

Corollary 2.21. ∂Dn is not a retract of Dn, and hence every map f : Dn −→ Dn has a fixed point.

Proof. Let r be such a retraction, so that ri = Id for the inclusion i : ∂Dn ↪→ Dn. Then the composition

Hn−1(∂Dn)
i∗ // Hn−1(Dn)

r∗ // Hn−1(∂Dn)

is the identity map on Hn−1(∂Dn) ∼= Z. Of course this is absurd since Hn−1(Dn) = 0.

Another easy consequence is the computation of H•(X ∧Y ): if the wedge sum is formed at points x ∈ X
and y ∈ Y such that (x,X), (y, Y ) are good pairs, then the inclusions i : X −→ X ∧ Y and j : Y −→ X ∧ Y
induce isomorphisms

H̃k(X)⊕ H̃k(Y ) −→ H̃k(X ∧ Y ).

This follows from the fact that (X t Y, {x, y}) is a good pair and H(X t Y/{x, y}) ∼= H̃(X t Y, {x, y}) =
H̃(X)⊕ H̃(Y ).

Yet another result which we may now prove easily: Brouwer’s invariance of dimension.

Corollary 2.22. If U ⊂ Rm and V ⊂ Rn are homeomorphic and nonempty, then n = m.

This result is easily obtained with the definition of local homology groups

Definition 17. Let x ∈ X. Then the local homology groups of X at x are Hn(X,X\{x}).

For any open neighbourhood U of x, excision gives isomorphisms

Hn(X,X − {x}) ∼= Hn(U,U − {x}),

hence the local homology groups only depend locally on x. For instance, a homeomorphism f : X −→ Y
must induce an isomorphism from the local homology of x to that of f(x).

For topological n-manifolds, Hk(X,X −{x}) ∼= Hk(Rn,Rn−{0}) ∼= H̃k−1(Rn−{0}) ∼= H̃k−1(Sn−1) and
hence it vanishes unless k = n, in which case it is isomorphic to Z. Note that we obtain a fiber bundle over
X with fiber above x given by Hn(X,X − {x}) and isomorphic to Z. Is this a trivial fiber bundle?
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